江西省兴源冲铜矿床同位素地球化学特征及成矿机制探讨
详细信息   下载全文 | 推荐本文 |
摘要
兴源冲铜矿床地处九岭南缘铜多金属大型矿集区西段的黄茅地区。文章在成矿地质特征的基础上,通过对矿石进行稳定同位素地球化学研究,重点分析了成矿物质来源,探讨了矿床成矿机制。碳、氧同位素分析结果表明,矿区碳酸盐岩δ13CVPDB为-5·4‰~1·9‰,平均为0·6‰,δ18OSMOW变化范围为9·0‰~13·9‰,平均为10·9‰,主要为海相碳酸盐岩,碳、氧同位素图解表明碳可能主要来源于深部,且受高温变质作用和低温蚀变作用明显;矿石硫化物硫同位素δ34S变化范围主要在1·0‰~6·2‰之间,个别样品同位素比值偏大,对比相似矿床,表明该矿床具有海底喷流沉积和后期岩浆热液叠加作用的特征。上述同位素地球化学特征表明,兴源冲铜矿床是在中元古代海底火山沉积基础上,经新元古代晋宁造山期岩浆热液、动力变质叠加成矿作用所形成。
        The Xingyuanchong copper deposit of Huangmao area is located in the west segment of the South Jiuling large copper polymetallic ore concentration area.In combination with the metallogenic characteristics of the ore deposit,the authors mainly studied stable isotopes of the ores to probe into the sources of metallogenic materials and metallogenic mechanism of the deposit.δ13CVPDB values of carbonates in this area vary in the range of-5.4‰~1.9‰,0.6‰ on average,whereas δ18OSMOW values range from 9.0‰ to 13.8‰,10.9‰ on average,indicating that carbonates were mainly marine carbonates.The δ18O-δ13C diagram shows that carbon in the region probably came from the deep earth,and experienced metamorphism at high temperatures and alteration at low temperatures.Except two higher values of δ34S,most δ34S values in this deposit vary in the range of 1.0‰~6.2‰;in comparison with other similar deposits,sulfur of this deposit is characterized by submarine exhala-tion sedimentation and hydrothermal superimposition.In combination with isotopic data and geological setting,it is proposed that the ore-forming processes of the Xingyuanchong copper deposit could be divided into two stages.At the first stage,submarine volcanic sediments or protore layers were formed in Mesoproterozoic.At the second stage,the pre-existing protores were altered by the hydrothermal fluids and dynamic metamorphism mainly derived from Jinning orogenic period in Late Proterozoic.
引文
丁少辉,余忠珍,罗小洪,吴光明.2004.江西九岭南缘铜多金属矿预测[J].资源调查与环境,25(3):178-183.
    葛朝华,韩发.1986.大宝山铁-多金属矿床的海相火山热液沉积成因特征[J].矿床地质,5(1):1-12.
    何国朝,林德松.1992.江西银山矿床的稳定同位素组成特征[J].矿产与地质,6(31):406-411.
    贺菊瑞,王爱国,芮行健,曾勇,李春海.2008.江西弋阳铁砂街中元古代海底火山喷流成矿作用[J].资源调查与环境,29(4):261-269.
    胡祥昭,彭恩生,孙振家.2000.湘东北七宝山铜多金属矿床地质特征及成因探讨[J].大地构造与成矿学,24(4):365-370.
    黄有年.1992.浙江西裘含铜块状硫化物矿床特征及成矿模式[J].地质找矿论丛,7(3):22-34.
    江西地质局.1986.江西省区域地质志[M].北京:地质出版社.1-921.
    江西省地质矿产厅.1997.江西省岩石地层[M].武汉:中国地质大学出版社.19-21.
    李均良.2009.江西省村前矽卡岩+斑岩复合型铜铅锌矿地质特征[J].地质找矿论丛,24(2):142-145.
    李均良,陈振华,蒋金明,符海明.2012a.江西省兴源冲铜矿区资源潜力评价[J].东华理工大学学报(自然科学版),35(1):81-88.
    李均良,陈振华,符海明.2012b.江西省兴源冲地区深部找矿潜力评价[J].地质找矿论丛,27(1):16-22.
    李献华.1998.华南晋宁期造山运动——地质年代学和地球化学制约[J].地球物理学报,41(增刊):184-194.
    刘家军,何明勤,李志明,刘玉平,李朝阳,张乾,杨伟光,杨爱平.2004.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J].矿床地质,23(1):1-10.
    刘志远.2005.赣东北乐华-德兴成矿带成矿环境与成矿作用[D].东北大学博士论文.
    楼法生,吴旭铃,凡秀君,刘成东,严兆彬,陈益平,徐磊.2012.江西万载县兴源冲铜矿成矿地质特征及矿床成因探讨[J].地质与勘探,48(4):704-712.
    马振东,李艳霞,单光祥.1999.沉积叠加改造型矿床的物源及富集机制的地球化学研究[J].矿床地质,18(2):110-120.
    毛景文,赫英,丁悌平.2002.胶东金矿形成期间地幔流体与成矿过程的碳氧氢同位素证据[J].矿床地质,21(2):121-128.
    毛景文,谢桂青,郭春丽,陈毓川.2007.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报,23(10):2329-2338.
    毛景文,陈懋弘,袁顺达,郭春丽.2011.华南地区钦杭成矿带地质特征和矿床时空分布规律[J].地质学报,85(5):636-658.
    毛景文,张作衡,王义天,等.2012.国外主要矿床类型、特点及找矿勘察[M].北京:地质出版社.1-480.
    孟雨.2009.钦杭成矿带被列为重点找矿带[N].中国黄金报,第004版.
    钱国华.2003.赣西铜铅锌矿床类型、地质特征及找矿认识[J].矿产与地质,17(增刊):338-341.
    钱鹏,陆建军,刘风香.2006.江西德兴斑岩铜矿成矿物质来源同位素示踪[J].世界地质,25(2):135-140.
    田金辉,倪培,范建国.2001.永平铜矿成矿流体特征研究[J].地质找矿论丛,16(1):24-27.
    王可法.1994.海相碳酸盐碳同位素组成及其意义[J].地质地球化学,(5):50-54.
    徐跃通,尚树川,张邦花.2000.浙江西裘铜块状硫化物矿床火山-热泉沉积成矿的地质地球化学证据[J].地球化学,29(1):14-20.
    严兆彬,郭福生,潘家永,郭国林,张曰静.2005.碳酸盐岩C,O,Sr同位素组成在古气候、古海洋环境研究中的应用[J].地质找矿论丛,20(1):53-56.
    张艳宜,史晓红.1995.赣西萍乡-高安成矿区带地层含矿性统计分析[J].有色金属矿产与勘查,4(6):365-372.
    赵海杰,谢桂青,魏克涛,柯于富.2012.湖北大冶铜绿山铜铁矿床矽卡岩矿物学及碳氧硫同位素特征[J].地质论评,58(2):379-395.
    赵瑞(译),B.A.格里年科,著.1980.硫同位素地球化学[M].北京:科学出版社.1-235.
    真允庆,束乾安.2006.中条山铜矿流体碳、氧同位素示踪[J].地质调查与研究,29(1):30-37.
    周宝直.2000.萍乐坳陷东段推构造特征及煤田预测[J].华东地质学院学报,23(2):134-140.
    邹建成.2010.江西万载兴源冲铜矿区发现中型规模铜矿资源潜力[J].中国金属通报,(22):4.
    Derry L A,Kaufaman A J and Jacobsen S B.1992.Sedimentary cyclingand environmental change in the Late Proeterozoic.Evidence fromstable and radiogenic isotopes[J].Geochinmica Cosmochimica Acta,56:1317-1329.
    Friedman I and O’Neil J R.1977.Complication of stable isotope fractionation fraction factors of geochemical interest[A].In:FleischerM.ed.Data of geochemistry(Sixth Edition):Geology survey professional paper[C].117p.
    Hoffman A,Gruszczynski M and Malkowski K.1991.On the interrelationship between temporal trends inδ13C,δ18O andδ34S in the worldocean[J].J.Geol.,99:355-370.
    Hoefs J.1997.Stable isotope geochemistry[M].3rd ed.Berlin:Springer-Verlag.1-201.
    Hugh R Rollison.1993.Using geological data:Evaluation,presentation,interpretation[M].U K:Longman Scientific&Technical.266-315.
    Iizasa K,Fiske R S,Ishizuka O,Yuasa M,Hashimoto J,Ishibashi J,Naka J,Horii Y,Fujiwara Y,Imai A and Koyama S.1999.AKuroko-type polymetallic sulfide deposit in a Submarine silicicCaldera[J].Science,283(5404):975-977.
    Kaufman A J,Jacobsen S R and Knoll A H.1993.The vendian recordof Sr and C isotopic variations in seawater,implications for tectonicsand paleoclimate[J].Earth Plant.Sci.Lett.,120:409-430.
    Ohmoto H and Rye R O.1979.Geochemistry of ore deposits[M].Ed-ition2.New York:Wiley.509-567.
    Ohmoto Hand Goldhaber M B.1997.Sulfur and carbon isotopes[A].In:Barnes H L,ed.Geochemistry of hydrothermal ore deposits[M].3rded.New York:Wiley.517-611.
    Robinson D J andHutchison R W.1982.Evidence for a volcanogenic-exhalative origin of a massive nickel sulphide deposit at Redstone,Timmins,Ontario[J].Geol.Assoc.Canada.Spec.,(25):211-254.
    Sharp R and Gemmell J B.2000.Sulfur isotopic characteristics of theAchean Cu-Zn Gossan Hill VHMS deposit,western Australia[J].Mineralium Deposita,35:533-550.
    Veizer J,Fritez P and Jones B.1986.Geochemistry of brachiiopods:Oxygen and carbon isotopic records of Paleozoic oceans[J].Geochim.Cosmochim.Acta,50:1679-1696.
目录

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700