Programming Mechanical and Physicochemical Properties of 3D Hydrogel Cellular Microcultures via Direct Ink Writing
详细信息    查看全文
文摘
3D hydrogel scaffolds are widely used in cellular microcultures and tissue engineering. Using direct ink writing, microperiodic poly(2-hydroxyethyl-methacrylate) (pHEMA) scaffolds are created that are then printed, cured, and modified by absorbing 30 kDa protein poly-l-lysine (PLL) to render them biocompliant in model NIH/3T3 fibroblast and MC3T3-E1 preosteoblast cell cultures. Spatial light interference microscopy (SLIM) live cell imaging studies are carried out to quantify cellular motilities for each cell type, substrate, and surface treatment of interest. 3D scaffold mechanics is investigated using atomic force microscopy (AFM), while their absorption kinetics are determined by confocal fluorescence microscopy (CFM) for a series of hydrated hydrogel films prepared from prepolymers with different homopolymer-to-monomer (Mr) ratios. The observations reveal that the inks with higher Mr values yield relatively more open-mesh gels due to a lower degree of entanglement. The biocompatibility of printed hydrogel scaffolds can be controlled by both PLL content and hydrogel mesh properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700