Effect of thermal annealing on the luminescence of defective ZnO nanoparticles synthesized by pulsed laser ablation in water
详细信息    查看全文
文摘
This work concerns ZnO nanoparticles (NPs), with sizes of tens of nm, produced by ablation with a pulsed Nd:YAG laser of a Zn plate in H<sub>2sub>O. TEM images evidence the formation of nanoparticles with sizes of tens of nm. Moreover, HRTEM images and Raman spectra show that the distance between the crystalline planes and the vibrational modes are consistent with ZnO nanocrystal in wurtzite structure. Their optical properties are characterized by two emission bands both excited above the energy gap (3.4 eV): the first at 3.3 eV is associated with excitons recombination, the second at 2.2 eV is proposed to originate from a singly ionized oxygen vacancy. The green emission is independent of water pH, thus suggesting that point defects lie inside NPs rather than at the surface. Thermal annealing at 300 °C in O<sub>2sub> and He atmosphere, produces a reduction of the A<sub>1sub>(LO) Raman mode at 562 cm<sup>-1sup>, which is related to the oxygen vacancies, and a consequent decrease of the defect luminescence, while the excitonic luminescence increases. These results indicate that the ZnO emissions can be controlled by thermal annealing, and are promising in view of optoelectronic applications. (

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700