Superconductivity and fluctuations in Ba1-<em>pem>K<em>pem>Fe2As2 and Ba(Fe1-<em>nem>Co<em>nem>)2As2
详细信息    查看全文
文摘
We study the interplay of fluctuations and superconductivity in BaFe2As2 (Ba-122) compounds with Ba and Fe substituted by K (p doping) and Co (n doping), respectively. To this end, we measured electronic Raman spectra as a function of polarization and temperature. We observe gap excitations and fluctuations for all doping levels studied. The response from fluctuations is much stronger for Co substitution and, according to the selection rules and the temperature dependence, originates from the exchange of two critical spin fluctuations with characteristic wave vectors equation-construct="true" class="math-equation-construct">equation-image="true" class="math-equation-image">equation-mathml="true" class="math-equation-mathml" style="display:none">ey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML" stretchy="false">(ey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML">±ey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML">πey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML">,ey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML">0ey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML" stretchy="false">) and equation-construct="true" class="math-equation-construct">equation-image="true" class="math-equation-image">equation-mathml="true" class="math-equation-mathml" style="display:none">ey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML" stretchy="false">(ey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML">0ey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML">,ey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML">±ey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML">πey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML" stretchy="false">). At 22% K doping (equation-construct="true" class="math-equation-construct">equation-image="true" class="math-equation-image">equation-mathml="true" class="math-equation-mathml" style="display:none">ey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML">pey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML">=ey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML">0.22), we find the same selection rules and spectral shape for the fluctuations but the intensity is smaller by a factor of 5. Since there exists no nematic region above the orthorhombic spin-density-wave (SDW) phase, the identification of the fluctuations via the temperature dependence is not possible. The gap excitations in the superconducting state indicate strongly anisotropic near-nodal gaps for Co substitution which make the observation of collective modes difficult. The variation with doping of the spectral weights of the equation-construct="true" class="math-equation-construct">equation-image="true" class="math-equation-image">equation-mathml="true" class="math-equation-mathml" style="display:none">ey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML">A1g and equation-construct="true" class="math-equation-construct">equation-image="true" class="math-equation-image">equation-mathml="true" class="math-equation-mathml" style="display:none">ey.com/namespaces/wiley" xmlns:wiley="http://www.wiley.com/namespaces/wiley/wiley" xmlns:cr="urn://wiley-online-library/content/render" xmlns="http://www.w3.org/1998/Math/MathML">B1g gap features does not support the influence of fluctuations on Cooper pairing. Therefore, the observation of Bardasis–Schrieffer modes inside the nearly clean gaps on the K-doped side remains the only experimental evidence for the relevance of fluctuations for pairing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700