A Bayesian supervised dual-dimensionality reduction model for simultaneous decoding of LFP and spike train signals
详细信息    查看全文
文摘
Neuroscientists are increasingly collecting multimodal data during experiments and observational studies. Different data modalities—such as electroencephalogram, functional magnetic resonance imaging, local field potential (LFP) and spike trains—offer different views of the complex systems contributing to neural phenomena. Here, we focus on joint modelling of LFP and spike train data and present a novel Bayesian method for neural decoding to infer behavioural and experimental conditions. This model performs supervised dual-dimensionality reduction: it learns low-dimensional representations of two different sources of information that not only explain variation in the input data itself but also predict extraneuronal outcomes. Despite being one probabilistic unit, the model consists of multiple modules: exponential principal components analysis (PCA) and wavelet PCA are used for dimensionality reduction in the spike train and LFP modules, respectively; these modules simultaneously interface with a Bayesian binary regression module. We demonstrate how this model may be used for prediction, parametric inference and identification of influential predictors. In prediction, the hierarchical model outperforms other models trained on LFP alone, spike train alone and combined LFP and spike train data. We compare two methods for modelling the loading matrix and find them to perform similarly. Finally, model parameters and their posterior distributions yield scientific insights. Copyright

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700