Contributors to Enhanced CO2 Electroreduction Activity and Stability in a Nanostructured Au Electrocatalyst
详细信息    查看全文
文摘
The formation of a nanostructure is a popular strategy for catalyst applications because it can generate new surfaces that can significantly improve the catalytic activity and durability of the catalysts. However, the increase in the surface area resulting from nanostructuring does not fully explain the substantial improvement in the catalytic properties of the CO2 electroreduction reaction, and the underlying mechanisms have not yet been fully understood. Here, based on a combination of extended X-ray absorption fine structure analysis, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy, we observed a contracted Au−Au bond length and low work function with the nanostructured Au surface that had enhanced catalytic activity for electrochemical CO2 reduction. The results may improve the understanding of the enhanced stability of the nanostructured Au electrode based on the resistance of cation adhesion during the CO2 reduction reaction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700