Fully Solution-Processed Small Molecule Semitransparent Solar Cells: Optimization of Transparent Cathode Architecture and Four Absorbing Layers
详细信息    查看全文
文摘
Semitransparent solar cells (SSCs) can open photovoltaic applications in many commercial areas, such as power-generating windows and building integrated photovoltaics. This study successfully demonstrates solution-processed small molecule SSCs with a conventional configuration for the presently tested material systems, namely BDTT-S-TR:PC70BM, N(Ph-2T-DCN-Et)3:PC70BM, SMPV1:PC70BM, and UU07:PC60BM. The top transparent cathode coated through solution processes employs a highly transparent silver nanowire as electrode together with a combination interface bilayer of zinc oxide nanoparticles (ZnO) and a perylene diimide derivative (PDINO). This ZnO/PDINO bilayer not only serves as an effective cathode buffer layer but also acts as a protective film on top of the active layer. With this integrated contribution, this study achieves a power conversion efficiency (PCE) of 3.62% for fully solution-processed SSCs based on BDTT-S-TR system. Furthermore, the other three systems with various colors exhibited the PCEs close to 3% as expected from simulations, demonstrate the practicality and versatility of this printed semitransparent device architecture for small mole­cule systems. This work amplifies the potential of small molecule solar cells for window integration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700