Validation of a cyclic plasticity computational method using fatigue full-field deformation measurements
详细信息    查看全文
文摘
The evolution of crack tip displacement and strain fields during uniaxial, room temperature, low-cycle fatigue experiments of Nickel superalloy compact tension specimens was measured by a digital image correlation approach and was further used to validate a cyclic plasticity model and corresponding deformation calculations made by a finite elements methodology. The experimental results provided data trends for the opening displacements and near crack tip strains as function of cycles. A finite element model was developed to capture test conditions for a measured crack size. The model captures crack tip plasticity by using a constitutive model calibrated against stress-strain measurements performed on a round bar. Similar quantities were extracted from the model predictions to compare with the digital image correlation measurements for model validation purposes. This type of direct comparison demonstrated that the computational model was capable to adequately capture the crack opening displacements at various stages of the specimen's fatigue life, providing in this way a tool for quantitative cyclic plasticity model validation. In addition, this integrated experimental-computational approach provides a framework to accelerate our understanding related to interactions of fatigue test data and models, as well as ways to inform one another.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700