Uniform stability for solutions of a structural acoustics PDE model with no added dissipative feedback
详细信息    查看全文
  • 作者:George Avalos and Pelin G. Geredeli
  • 刊名:Mathematical Methods in the Applied Sciences
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:39
  • 期:18
  • 页码:5497-5512
  • 全文大小:436K
  • ISSN:1099-1476
文摘
A rate of rational decay is obtained for smooth solutions of a PDE model, which has been used in the literature to describe structural acoustic flows. This structural acoustics model is composed of two distinct PDE systems: (i) a wave equation, to model the interior acoustic flow within the given cavity Ω and (ii) a structurally damped elastic equation, to describe time-evolving displacements along the flexible portion Γ0 of the cavity walls. Moreover, the extent of damping in this elastic component is quantified by parameter η∈[0,1]. The coupling between these two distinct dynamics occurs across the boundary interface Γ0. Our main result is the derivation of uniform decay rates for classical solutions of this particular structural acoustic PDE, decay rates that are obtained without incorporating any additional boundary dissipative feedback mechanisms. In particular, in the case that full Kelvin–Voight damping is present in fourth-order elastic dynamics, that is, the structural acoustics system as it appears in the literature, solutions that correspond to smooth initial data decay at a rate of none">Ot16. By way of deriving these stability results, necessary a priori inequalities for a certain static structural acoustics PDE model are generated here; these inequalities ultimately allow for an application of a recently derived resolvent criterion for rational decay. Copyright

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700