Quantum-chemistry descriptors for photosensitizers based on macrocycles
详细信息    查看全文
文摘
Phthalocyanines, porphyrins, and chlorins have been widely studied as photosensitizers. Both experimental and computational strategies are employed in order to propose new and more active molecules derived from those macrocycles. In this context, there are two main strategies used: (i) the addition of different substituents and (ii) the complexation of the macrocycle with different metallic ions. In this work, we present selected descriptors based on quantum chemistry calculations for forty macrocycles, including some approved drugs. We have found that density functional theory is a suitable methodology to study the large sets of molecules when applying the B3LYP/LanL2DZ methodology for geometry optimization and TD-OLYP/6-31G(d) for absorption spectrum. The inclusion of solvent effects by means of continuum model is important in order to obtain the accurate electronic data. We have verified that by bonding charged or polar substituents to the macrocycle, it is possible to enhance water solvation as well as to improve spectroscopic properties because molecular orbital contributions for Q band can be affected by some substituents. Selected descriptors, electronic and steric, were pointed out as important to propose the new photosensitizers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700