Fatigue crack growth prediction in nuclear piping using Markov chain Monte Carlo simulation
详细信息    查看全文
文摘
In this paper, we present and demonstrate a methodology to improve probabilistic fatigue crack growth (FCG) predictions by using the concept of Bayesian updating using Markov chain Monte Carlo simulations. The methodology is demonstrated on a cracked pipe undergoing fatigue loading. Initial estimates of the FCG rate are made using the Paris law. The prior probability distributions of the Paris law parameters are taken from the tests on specimen made of the same material as that of pipe. Measured data on crack depth over number of loading cycles are used to update the prior distribution using the Markov chain Monte Carlo. The confidence interval on the predicted FCG rate is also estimated. In actual piping placed in a plant, the measured data can be considered equivalent to the data received from in-service inspection. It is shown that the proposed methodology improves the fatigue life prediction. The number of observations used for updating is found to leave a significant effect on the accuracy of the updated prediction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700