Periodic density functional theory study of the high-pressure behavior of crystalline 7,2′-anhydro-β-d-arabinosylorotidine
详细信息    查看全文
  • 作者:Ying Guo ; Qingqing Liu and Xingqiang Zhao
  • 刊名:Journal of Physical Organic Chemistry
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:30
  • 期:1
  • 全文大小:1464K
  • ISSN:1099-1395
文摘
In this work, a detailed study of the structural, electronic, and absorption properties of crystalline 7,2′-anhydro-β-d-arabinosylorotidine (Cyclo ara-O) in the pressure range of 0–350 GPa is performed by density functional theory calculations. The detail analysis of the crystal with increasing pressure shows that complex transformations occur in Cyclo ara-O under compression. In addition, the b-direction is much stiffer than the a- and c-axis at 0–330 GPa, suggesting that the Cyclo ara-O crystal is anisotropic in the certain pressure region. In the pressure range of 110–290 GPa, repeated formations and disconnections of covalent bonds in O7–O6* and C3–C6* occur several times, resulting in a new six-atom ring that forms at 220, 270, and 290 GPa, while a five-atom ring and seven-atom ring form between two adjacent molecules at 300 and 340 GPa, respectively. Then, the analysis of the band gap and DOS (PDOS) of Cyclo ara-O indicates that its electronic character has changed at 300 GPa into an excellent insulator, but the electron transition is much easier at 350 GPa. Moreover, the relatively high optical activity with the pressure increases of Cyclo ara-O is seen from the absorption spectra, and two obvious structural transformations are also observed at 180 and 230 GPa, respectively. Copyright

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700