Thermodynamic Properties of Polymorphs of Fluorosulfate Based Cathode Materials with Exchangeable Potassium Ions
详细信息    查看全文
文摘
FeSO4F-based frameworks have recently emerged as attractive candidates for alkali insertion electrodes. Mainly owing to their rich crystal chemistry, they offer a variety of new host structures with different electrochemical performances and physical properties. In this paper we report the thermodynamic stability of two such K-based “FeSO4F” host structures based on direct solution calorimetric measurements. KFeSO4F has been reported to crystallize in two different polymorphic modifications—monoclinic and orthorhombic. The obtained enthalpies of formation from binary components (KF plus FeSO4) are negative for both polymorphs, indicating that they are thermodynamically stable at room temperature, which is very promising for the future exploration of sulfate based cathode materials. Our measurements show that the low-temperature monoclinic polymorph is enthalpically more stable than the orthorhombic phase by ≈10 kJ mol−1, which is consistent with the preferential formation of monoclinic KFeSO4F at low temperature. Furthermore, observed phase transformations and difficulties in the synthesis process can be explained based on the obtained calorimetric results. The KMnSO4F orthorhombic phase is more stable than both polymorphs of KFeSO4F.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700