Flexible Inkjet-Printed Multielectrode Arrays for Neuromuscular Cartography
详细信息    查看全文
文摘
Flexible Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) conductive-polymer multielectrode arrays (MEAs) are fabricated without etching or aggressive lift-off processes, only by additive solution processes. Inkjet printing technology has several advantages, such as a customized design and a rapid realization time, adaptability to different patients and to different applications. In particular, inkjet printing technology, as additive and “contactless” technology, can be easily inserted into various technological fabrication steps on different substrates at low cost. In vivo electrochemical impedance spectroscopy measurements show the time stability of such MEAs. An equivalent circuit model is established for such flexible cutaneous MEAs. It is shown that the charge transfer resistance remains the same, even two months after fabrication. Surface electromyography and electrocardiography measurements show that the PEDOT:PSS MEAs record electrophysiological activity signals that are comparable to those obtained with unitary Ag/AgCl commercial electrodes. Additionally, such MEAs offer parallel and simultaneous recordings on multiple locations at high surface density. It also proves its suitability to reconstruct an innervation zone map and opens new perspectives for a better control of amputee's myoelectric prostheses. The employment of additive technologies such as inkjet printing suggests that the integration of multifunctional sensors can improve the performances of ultraflexible brain-computer interfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700