High-Temperature Hydrogen Storage of Multiple Molecules: Theoretical Insights from Metalated Catechols
详细信息    查看全文
文摘
Insertion of open metal sites (OMS) into metal–organic frameworks (MOFs) is a promising strategy for preparation of physical adsorbents that enable H2 storage at room temperature. Density functional theory (DFT) calculations are reported on a promising paradigm for adsorption of multiple hydrogen molecules to a single OMS attached to an MOF linker via a catechol or thiocatechol. The interactions between adsorbed H2 and the OMS are characterized with special attention to their degrees of freedom and thermal properties. By combining the present calculations with experimental data, some of these materials are predicted to have usable capacities close to the Department of Energy (DOE) 2020 target of 40 gr L−1 marking them as important synthetic targets. Surprisingly, calculations suggest that a Ca–catechol OMS retains the ability to bind up to two hydrogens even in the presence of residual solvent.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700