Ion-selective Electrodes with 3D Nanostructured Conducting Polymer Solid Contact
详细信息    查看全文
文摘
Until now both ion-to-electron transducers as well as large surface area nanostructured conducting materials were successfully used as solid contacts for polymer-based ion-selective electrodes. We were interested to explore the combination of these two approaches by fabricating ordered electrically conducting polymer (ECP) nanostructures using 3D nanosphere lithography and electrosynthesis to provide a high surface area and capacitive interface for solid contact ion-selective electrodes (SC-ISEs). For these studies we used poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT(PSS)) films with 750 nm diameter interconnected pores as the intermediate layer between a glassy carbon electrode and a Ag+ -selective polymeric membrane. We also investigated the feasibility of loading the voids created in the polymer film with a lipophilic redox mediator (1,1’-dimethylferrocene) to provide the respective ISEs with well-defined/controllable E0 values. These expectations were fulfilled as the standard deviation of E0 values were reduced with almost an order of magnitude for 3D nanostructured SC-ISEs filled with the redox mediator as compared to their redox mediator-free analogs. The detrimental effect of the redox mediator extraction into the plasticized PVC-based ion-selective membrane (ISM) was efficiently suppressed by replacing the PVC-based ISMs with a low diffusivity silicone rubber matrix.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700