Thermal structure and melting conditions in the mantle beneath the Basin and Range province from seismology and petrology
详细信息    查看全文
  • 作者:T. Plank ; D. W. Forsyth
  • 刊名:Geochemistry, Geophysics, Geosystems
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:17
  • 期:4
  • 页码:1312-1338
  • 全文大小:3.0MB
  • ISSN:1525-2027
文摘
To better constrain the temperature structure in the upper mantle, we jointly invert seismic surface wave velocities and basalt thermobarometry. New measurements of the water concentration (1.0–3.5 wt %) and oxygen fugacity (FMQ + 0.5 to + 1.5) of basalts from seven recently active volcanic fields in the Basin and Range province (Cima, Pisgah, Amboy, Big Pine, Black Rock, Snow Canyon, W. Grand Canyon) enable more accurate equilibration pressure (P) and temperature (T) estimates of the mantle melts. We developed a revised thermobarometer that more precisely predicts the results of laboratory experiments on melts equilibrated with olivine and orthopyroxene and accounts for the effects of water and CO2. Applying these methods to basalts from the Basin and Range we find that most equilibrated near the dry solidus in P-T space and at depths in the vicinity of the lithosphere-asthenosphere boundary (LAB) inferred from receiver function analysis and Rayleigh surface wave tomography. The wet basalts should have begun melting well below the dry solidus, so the depths of equilibration probably reflect ponding of rising melts beneath the nominally dry lithosphere. A two-parameter thermal model is sufficient to simultaneously satisfy both the seismological and petrological constraints. In the model, the depth to the dry solidus defines the bottom boundary of the conductive lid, while the potential temperature (Tp) controls the asthenosphere and LAB thermal structure. The optimum estimates of Tp range from <1300 to >1500°C, and depths to the LAB range from ∼55 to 75 km, with uncertainties on the order of ±50°C and ±10 km. In contrast to standard tomographic images or basalt thermobarometry, the output of the joint inversion is a geotherm that can be tested quantitatively against other observations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700