Highly Selective Ionic Transport through Subnanometer Pores in Polymer Films
详细信息    查看全文
文摘
Novel transport phenomena through nanopores are expected to emerge as their diameters approach subnanometer scales. However, it has been challenging to explore such a regime experimentally. Here, this study reports on polymer subnanometer pores exhibiting unique selective ionic transport. 12 μm long, parallel oriented polymer nanopores are fabricated in polyethylene terephthalate (PET) films by irradiation with GeV heavy ions and subsequent 3 h exposure to UV radiation. These nanopores show ionic transport selectivity spanning more than 6 orders of magnitude: the order of the transport rate is Li+>Na+>K+>Cs+>>Mg2+>Ca2+>Ba2+, and heavy metal ions such as Cd2+ and anions are blocked. The transport can be switched off with a sharp transition by decreasing the pH value of the electrolyte. Structural measurements and molecular dynamics simulations suggest that the ionic transport is attributed to negatively charged nanopores with pore radii of ≈0.3 nm, and the selectivity is associated with the dehydration effect.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700