Synthesis, Optical Properties, and Multiplexed Raman Bio-Imaging of Surface Roughness-Controlled Nanobridged Nanogap Particles
详细信息    查看全文
文摘
Plasmonic nanostructures are widely studied and used because of their useful size, shape, composition and assembled structure-based plasmonic properties. It is, however, highly challenging to precisely design, reproducibly synthesize and reliably utilize plasmonic nanostructures with enhanced optical properties. Here, we devise a facile synthetic method to generate Au surface roughness-controlled nanobridged nanogap particles (Au-RNNPs) with ultrasmall (≈1 nm) interior gap and tunable surface roughness in a highly controllable manner. Importantly, we found that particle surface roughness can be associated with and enhance the electromagnetic field inside the interior gap, and stronger nanogap-enhanced Raman scattering (NERS) signals can be generated from particles by increasing particle surface roughness. The finite-element method-based calculation results support and are matched well with the experimental results and suggest one needs to consider particle shape, nanogap and nanobridges simultaneously to understand and control the optical properties of this type of nanostructures. Finally, the potential of multiplexed Raman detection and imaging with RNNPs and the high-speed, high-resolution Raman bio-imaging of Au-RNNPs inside cells with a wide-field Raman imaging setup with liquid crystal tunable filter are demonstrated. Our results provide strategies and principles in designing and synthesizing plasmonically enhanced nanostructures and show potential for detecting and imaging Raman nanoprobes in a highly specific, sensitive and multiplexed manner.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700