Composition-Based Prediction of Temperature-Dependent Thermophysical Food Properties: Reevaluating Component Groups and Prediction Models
详细信息    查看全文
文摘
Prediction of temperature-dependent thermophysical properties (thermal conductivity, density, specific heat, and thermal diffusivity) is an important component of process design for food manufacturing. Current models for prediction of thermophysical properties of foods are based on the composition, specifically, fat, carbohydrate, protein, fiber, water, and ash contents, all of which change with temperature. The objectives of this investigation were to reevaluate and improve the prediction expressions for thermophysical properties. Previously published data were analyzed over the temperature range from 10 to 150 °C. These data were analyzed to create a series of relationships between the thermophysical properties and temperature for each food component, as well as to identify the dependence of the thermophysical properties on more specific structural properties of the fats, carbohydrates, and proteins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700