Novel Organic-Dehydration Membranes Prepared from Zirconium Metal-Organic Frameworks
详细信息    查看全文
文摘
Membranes with outstanding performance that are applicable in harsh environments are needed to broaden the current range of organic dehydration applications using pervaporation. Here, well-intergrown UiO-66 metal-organic framework membranes fabricated on prestructured yttria-stabilized zirconia hollow fibers are reported via controlled solvothermal synthesis. On the basis of the adsorption–diffusion mechanism, the membranes provide a very high flux of up to ca. 6.0 kg m−2 h−1 and excellent separation factor (>45 000) for separating water from i-butanol (next-generation biofuel), furfural (promising biochemical), and tetrahydrofuran (typical organic). This performance, in terms of separation factor, is one to two orders of magnitude higher than that of commercially available polymeric and silica membranes with equivalent flux. It is comparable to the performance of commercial zeolite NaA membranes. Additionally, the membrane remains robust during a pervaporation stability test (≈300 h), including exposure to harsh environments (e.g., boiling benzene, boiling water, and sulfuric acid) where some commercial membranes (e.g., zeolite NaA membranes) cannot survive.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700