Emergent horizon, Hawking radiation and chaos in the collapsed polymer model of a black hole
详细信息    查看全文
  • 作者:Ram Brustein and A.J.M. Medved
  • 刊名:Fortschritte der Physik
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:65
  • 期:2
  • 全文大小:460K
  • ISSN:1521-3978
文摘
We have proposed that the interior of a macroscopic Schwarzschild black hole (BH) consists of highly excited, long, closed, interacting strings and, as such, can be modeled as a collapsed polymer. It was previously shown that the scaling relations of the collapsed-polymer model agree with those of the BH. The current paper further substantiates this proposal with an investigation into some of its dynamical consequences. In particular, we show that the model predicts, without relying on gravitational effects, an emergent horizon. We further show that the horizon fluctuates quantum mechanically as it should and that the strength of the fluctuations is inversely proportional to the BH entropy. It is then demonstrated that the emission of Hawking radiation is realized microscopically by the quantum-induced escape of small pieces of string, with the rate of escape and the energy per emitted piece both parametrically matching the Hawking temperature. We also show, using standard methods from statistical mechanics and chaos theory, how our model accounts for some other known properties of BHs. These include the accepted results for the scrambling time and the viscosity-to-entropy ratio, which in our model apply not only at the horizon but throughout the BH interior.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700