Sea ice melt onset associated with lead opening during the spring/summer transition near the North Pole
详细信息    查看全文
文摘
In the central Arctic Ocean, autonomous observations of the ocean mixed layer and ice documented the transition from cold spring to early summer in 2011. Ice-motion measurements using GPS drifters captured three events of lead opening and ice ridge formation in May and June. Satellite sea ice concentration observations suggest that locally observed lead openings were part of a larger-scale pattern. We clarify how these ice deformation events are linked with the onset of basal sea ice melt, which preceded surface melt by 20 days. Observed basal melt and ocean warming are consistent with the available input of solar radiation into leads, once the advent of mild atmospheric conditions prevents lead refreezing. We use a one-dimensional numerical simulation incorporating a Local Turbulence Closure scheme to investigate the mechanisms controlling basal melt and upper ocean warming. According to the simulation, a combination of rapid ice motion and increased solar energy input at leads promotes basal ice melt, through enhanced mixing in the upper mixed layer, while slow ice motion during a large lead opening in mid-June produced a thin, low-density surface layer. This enhanced stratification near the surface facilitates storage of solar radiation within the thin layer, instead of exchange with deeper layers, leading to further basal ice melt preceding the upper surface melt.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700