“Shine & Click” Photo-Induced Interfacial Unmasking of Strained Alkynes on Small Water-Soluble Gold Nanoparticles
详细信息    查看全文
文摘
In this study, we report the design, synthesis, and characterization of small 3 nm water soluble gold nanoparticles (AuNPs) that feature cyclopropenone-masked strained alkyne moieties capable of undergoing interfacial strain-promoted cycloaddition (i-SPAAC) with azides after exposure to UV-A light. A strained alkyne precursor was incorporated onto AuNPs by direct ligand exchange of a thiol-modified cyclopropenone-masked dibenzocyclooctyne (photoDIBO) ligand. These photoDIBO-AuNPs were characterized by 1H NMR, IR, and UV/Vis spectroscopy, as well as transmission electron microscopy (TEM) and thermogravimetric analysis (TGA), and the extent of modification was quantified. Upon irradiation with UV-A light, photoDIBO-AuNPs underwent efficient and quantitative regeneration of the parent strained alkyne by photochemical decarbonylation to afford DIBO-derivatized AuNPs. DIBO-AuNPs were found to react cleanly and rapidly (k=5.3×10−2m−1 s−1) by an interfacial strain-promoted alkyne-azide cycloadditon (i-SPAAC) with benzyl azide, which served as a simple model system. Furthermore, DIBO-AuNPs were reacted with various azides and a nitrone (interfacial strain-promoted alkyne-nitrone cycloaddition, i-SPANC) to showcase the generality of this approach for the facile modification of AuNP surfaces and their properties. The cyclopropenone-based photo-triggered click chemistry at the interface of water-soluble AuNPs offers exciting opportunities for the atom-by-atom control and assembly of functional materials for applications in materials and biomaterials science as well as in chemical biology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700