Plasmonic Octahedral Gold Nanoparticles of Maximized Near Electromagnetic Fields for Enhancing Catalytic Hole Transfer in Solar Water Splitting
详细信息    查看全文
文摘
Due to their localized surface plasmon resonances in visible spectrum, noble metal nanostructures have been considered for improving the photoactivity of wide bandgap semiconductors. Improved photoactivity is attributed to localized surface plasmon relaxations such as direct electron injection and resonant energy transfer. However, the details on the plasmonic solar water splitting through near electromagnetic field enhancement have not been fully understood. Here, the authors report that shape-controlled gold nanoparticles on wide bandgap semiconductors improve the water-splitting photoactivity of the semiconductors with over-bandgap photon energies compared to sub-bandgap photon energies. It is revealed that hot hole injection into the oxygen evolution reaction potential is the rate-limiting step in plasmonic solar water splitting. The proposed concept of photooxidation catalysts derived from an ensemble of gold nanoparticles having sharp vertices is applicable to various photocatalytic semiconductors and provides a theoretical framework to explore new efficient plasmonic photoelectrodes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700