Mass transfer and reaction kinetics of soybean oil epoxidation in a formic acid-autocatalyzed reaction system
详细信息    查看全文
文摘
In this study, the mass transfer and reaction kinetics of soybean oil epoxidation using concentrated hydrogen peroxide in a formic acid-autocatalyzed reaction system were studied in detail. Studying the mass transfer of formic acid showed that the influence of reactant diffusion near the interface is eliminated when the stirring rate is > 120 rpm in a double-stirred cell, and the mass transfer rate decreases greatly with the conversion of double bonds and a decrease of reaction temperature. A temperature increase has little impact on the equilibrium of formic acid in the oil/water system, while an increase of epoxidized soybean oil significantly increases the value of the partition coefficient of formic acid. Another important aspect in the kinetic study is the decomposition of performic acid, which can cause the reduction of H2O2 and formic acid during the reaction. Finally, a biphasic model, which considers all reactions in oil and aqueous phases, the equilibrium and mass transfer of reagents and products between the phases, and the evolution of proton concentrations with time, was developed to describe the epoxidation process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700