Roughness replication in neutron supermirrors
详细信息    查看全文
文摘
Neutron supermirrors (SMs), the major components of neutron optical devices, are depth-graded d-spacing multilayers of several hundreds to several thousands of bilayers. The interface roughness is a major factor in the reflectivity of multilayers. This influence is especially significant if the number of bilayers is large. In this work, the interface roughness and its correlations were studied in DC-sputtered Ni–Ti neutron supermirrors. Detector scans were carried out to observe off-specular neutron scattering in selected regions of the q space from (increasing bilayer thickness) normal- and (decreasing bilayer thickness) reverse-layer-sequence SMs. In-plane and out-of-plane roughness correlations are manifested in diffuse scatter plateaus and peaks which are interpreted in terms of resonant diffuse scattering. Distorted wave Born approximation simulations quantitatively reproduce the characteristic features of the measured detector scans with reasonable roughness correlation parameters, i.e. in-plane and out-of-plane correlation lengths, common interface roughness, and Hurst parameters. The different character of resonant diffuse scattering from normal- and reverse-layer-sequence SMs is qualitatively explained and systematized using quasi-kinematical considerations in terms of material and SM parameters. The total off-specular intensity of the supermirrors was found to be non-monotonic with respect to the specular reflectivity at the corresponding angle of incidence.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700