Solution Synthesis, Surface Passivation, Optical Properties, Biomedical Applications, and Cytotoxicity of Silicon and Germanium Nanocrystals
详细信息    查看全文
文摘
Silicon and germanium nanocrystals (NCs) are attractive materials owing to their unique size and surface-dependent optical properties. The optical properties of silicon and germanium NCs make them highly suitable for a range of applications, including bioimaging, light-emitting diodes, and solar cells. In this review, the solution synthesis, surface passivation, optical properties, biomedical applications, and cytotoxicity of silicon and germanium NCs are compared and contrasted. Over the last 10 years, synthetic protocols have improved considerably, with size control readily achieved. Investigations have begun into a range of silicon and germanium nanostructures, including doped, alloy, and metal–semiconductor hybrid NCs, which represent the next generation of silicon and germanium nanomaterials. Silicon and germanium NCs are actively researched for a wide array of biomedical applications, including, long-term in vivo cellular imaging, fluorescent nanocarriers for drug delivery, and as contrast agents for magnetic resonance imaging (MRI). Cytotoxicity studies have shown the low toxicity of Si NCs, while demonstrating that Ge NCs are less toxic than CdSe NCs at similar concentrations, giving these materials a strong future in nanomedicine applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700