On the nature of cross‐isobath energy fluxes in topographically modified barotropic semidiurnal Kelvin waves
详细信息    查看全文
  • 作者:Tianyi Zhang ; Alexander E Yankovsky
  • 刊名:Journal of Geophysical Research: Oceans
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:121
  • 期:5
  • 页码:3058-3074
  • 全文大小:3.5MB
  • ISSN:2169-9291
文摘
Continental shelf topography modifies a Kelvin wave into a hybrid Kelvin-edge wave with a nonzero across-isobath velocity and a phase speed that decreases with increasing wave number while the group velocity reaches a minimum at intermediate wave numbers. We model the modified semidiurnal Kelvin wave adjustment to alongshore changes in the shelf width. The model domain consists of two alongshore-uniform continental shelves of different widths adjoined through a 150 km long transition zone. The continental shelf and slope are adjacent to an ocean of a constant depth, allowing radiation of Poincaré waves. We consider three shelf widths of 150, 250, and 300 km, where properties of a zero mode at semidiurnal frequency change from Kelvin wave like to edge wave like. For each shelf width, a zero wave mode has its distinctive alongshore energy flux structure on the shelf. As the incident wave encounters a variable shelf width, the alongshore energy flux converges (diverges) on the shelf resulting in an offshore (onshore) energy flux over the continental slope. Furthermore, for a strongly convergent alongshore energy flux, the incident wave mode scatters into radiating Poincaré waves. On sufficiently wide shelves, a strong across-isobath energy flux comparable with the incident wave energy flux can be triggered even by relatively modest changes of shelf width. An energy flux divergence parameter De is defined, which scales with magnitude and direction of the energy flux across the continental slope. More than 50% of the incident energy flux scatters into modes radiating offshore when De is −1 or less.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700