Magnetotelluric tensors, electromagnetic field scattering and distortion in three‐dimensional environments
详细信息    查看全文
  • 作者:Colin Brown
  • 刊名:Journal of Geophysical Research: Solid Earth
  • 出版年:2016
  • 出版时间:October 2016
  • 年:2016
  • 卷:121
  • 期:10
  • 页码:7040-7053
  • 全文大小:237.0KB
  • ISSN:2169-9356
文摘
This paper describes how subsurface resistivity distributions can be estimated directly from the magnetotelluric (MT) tensor relationship between electric and magnetic fields observed on a three-dimensional (3-D) half-space. It presents an inhomogeneous plane wave analogy where relationships between horizontal electric and magnetic fields, and an apparent current density define an apparent resistivity tensor constructed from a quadratic function of the MT tensor. An extended-Born relationship allows the electric field to be normalized with respect to an apparent background current density. The model is generalized by including the vertical magnetic field in a 3 by 3 MT response tensor. A complex apparent wave number tensor, constructed from this tensor, has eigenvalues which, using the plane wave analogy, are the vertical wave numbers associated with the eigenpolarizations of propagating waves in the model half space. The elements associated with the vertical magnetic field transfer function define the horizontal wave numbers. An extended 3 by 3 phase tensor contains four elements of the conventional 2 by 2 phase tensor and two elements associated with the vertical magnetic transfer function. The extended phase tensor and a single real distortion tensor with six independent elements can be used to quantify static electric and magnetic field distortions. The approach provides a theoretical basis for visualization and migration of MT data, in comparison with results from other electrical and EM techniques, a starting point for constrained 3-D inversions, and an assessment of results with other geophysical and geological data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700