Crystal structure of a dimerization domain of human Caprin-1: insights into the assembly of an evolutionarily conserved ribonucleoprotein complex consisting of Caprin-1, FMRP and G3BP1
详细信息    查看全文
文摘
Caprin-1 plays roles in many important biological processes, including cellular proliferation, innate immune response, stress response and synaptic plasticity. Caprin-1 has been implicated in several human diseases, including osteosarcoma, breast cancer, viral infection, hearing loss and neurodegenerative disorders. The functions of Caprin-1 depend on its molecular-interaction network. Direct interactions have been established between Caprin-1 and the fragile X mental retardation protein (FMRP), Ras GAP-activating protein-binding protein 1 (G3BP1) and the Japanese encephalitis virus (JEV) core protein. Here, crystal structures of a fragment (residues 132–251) of Caprin-1, which adopts a novel all-α-helical fold and mediates homodimerization through a substantial interface, are reported. Homodimerization creates a large and highly negatively charged concave surface suggestive of a protein-binding groove. The FMRP-interacting sequence motif forms an integral α-helix in the dimeric Caprin-1 structure in such a way that the binding of FMRP would not disrupt the homodimerization of Caprin-1. Based on insights from the structures and existing biochemical data, the existence of an evolutionarily conserved ribonucleoprotein (RNP) complex consisting of Caprin-1, FMRP and G3BP1 is proposed. The JEV core protein may bind Caprin-1 at the negatively charged putative protein-binding groove and an adjacent E-rich sequence to hijack the RNP complex.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700