Theoretical Modelling and Facile Synthesis of a Highly Active Boron-Doped Palladium Catalyst for the Oxygen Reduction Reaction
详细信息    查看全文
文摘
A highly active alternative to Pt electrocatalysts for the oxygen reduction reaction (ORR), which is the cathode-electrode reaction of fuel cells, is sought for higher fuel-cell performance. Our theoretical modelling reveals that B-doped Pd (Pd-B) weakens the absorption of ORR intermediates with nearly optimal binding energy by lowering the barrier associated with O2 dissociation, suggesting Pd-B should be highly active for ORR. In fact, Pd-B, facile synthesized by an electroless deposition process, exhibits 2.2 times and 8.8 times higher specific activity and 14 times and 35 times less costly than commercial pure Pd and Pt catalysts, respectively. Another computational result is that the surface core level of Pd is negatively shifted by B doping, as confirmed by XPS, and implies that filling the density of states related to the anti-bonding of oxygen to Pd surfaces with excess electrons from B doping, weakens the O bonding to Pd and boosts the catalytic activity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700