Simulating the Impact of Particle Size Distribution on the Performance of Graphite Electrodes in Lithium-Ion Batteries
详细信息    查看全文
文摘
In this work we present a fundamental model-based analysis of the effect of active material particle size distribution (PSD) on graphite electrodes and their performance. We focused on the determination of the impact of differently shaped and scaled PSDs on the electrode performance, which is mainly influenced by the performance of the individual particles and their interaction. A mathematical electrode model with a distributed particle size is used for analysis to identify the different local current densities and the charging behavior of the particles. The heterogeneity provokes uneven surface overpotentials and reaction rates. Their identification facilitates the investigation of the degradation of such heterogeneous systems. In addition, we present an approach that accounts for the change of a PSD because of the restructuring of the electrode morphology during battery usage into the mathematical model and identify the general impact of particle cracking and agglomeration on the battery performance. Moreover, the importance of PSD in Li-ion batteries is shown by comparing the results obtained with a single particle model used commonly. This comparison shows that in case of narrow distributions surface-area- and volume-based mean approximations are sufficient to predict overpotentials and electrode capacity if kinetic losses are dominated either by reaction at the surface or diffusion processes, respectively. This work indicates that the PSD and its change impact the performance and degradation of Li-ion batteries considerably. We suggest that the PSD and its evolution should be of particular interest in the study of the degradation of particle-based electrodes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700