Fluid structure interaction (FSI) in piston diaphragm pumps
详细信息    查看全文
文摘
Piston diaphragm pumps are used worldwide to transport abrasive and/or aggressive slurries against high discharge pressures in the mining, mineral processing, and power industries. The limitation of the strain levels in the elastomer of the diaphragm is of utmost importance for eliminating fatigue failures of the diaphragm and thereby obtaining a high reliability of the piston diaphragm pump. The actual strain levels in the diaphragm are the result of a complex fluid structure interaction mechanism within the pump chamber. Understanding of this fluid structure interaction mechanism has improved in the last decades but is still limited. This paper first describes a detailed dimensional analysis of the fluid structure interaction mechanism and shows how it has been used to evaluate field experiences and how it is currently being used within robust design and selection rules for piston diaphragm pumps. Next, the paper describes the development of a numerical model for modelling the complex fluid structure interaction mechanism which enables the prediction of the resulting diaphragm deformation and strain levels. A novel combination of different immersed boundary approaches is used for modelling the fluid structure interaction phenomena. Furthermore an experimental setup is described whose results are used to validate the results of the numerical model. Some preliminary results of the numerical model and the experiments are shown.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700