A High-Energy Lithium-Ion Capacitor by Integration of a 3D Interconnected Titanium Carbide Nanoparticle Chain Anode with a Pyridine-Derived Porous Nitrogen-Doped Carbon Cathode
详细信息    查看全文
文摘
Lithium-ion capacitors (LICs) are hybrid energy storage devices that have the potential to bridge the gap between conventional high-energy lithium-ion batteries and high-power capacitors by combining their complementary features. The challenge for LICs has been to improve the energy storage at high charge−discharge rates by circumventing the discrepancy in kinetics between the intercalation anode and capacitive cathode. In this article, the rational design of new nanostructured LIC electrodes that both exhibit a dominating capacitive mechanism (both double layer and pseudocapacitive) with a diminished intercalation process, is reported. Specifically, the electrodes are a 3D interconnected TiC nanoparticle chain anode, synthesized by carbothermal conversion of graphene/TiO2 hybrid aerogels, and a pyridine-derived hierarchical porous nitrogen-doped carbon (PHPNC) cathode. Electrochemical properties of both electrodes are thoroughly characterized which demonstrate their outstanding high-rate capabilities. The fully assembled PHPNC//TiC LIC device delivers an energy density of 101.5 Wh kg−1 and a power density of 67.5 kW kg−1 (achieved at 23.4 Wh kg−1), and a reasonably good cycle stability (≈82% retention after 5000 cycles) within the voltage range of 0.0−4.5 V.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700