Lithium Germanate (Li2GeO3): A High-Performance Anode Material for Lithium-Ion Batteries
详细信息    查看全文
文摘
A simple, cost-effective, and easily scalable molten salt method for the preparation of Li2GeO3 as a new type of high-performance anode for lithium-ion batteries is reported. The Li2GeO3 exhibits a unique porous architecture consisting of micrometer-sized clusters (secondary particles) composed of numerous nanoparticles (primary particles) and can be used directly without further carbon coating which is a common exercise for most electrode materials. The new anode displays superior cycling stability with a retained charge capacity of 725 mAh g−1 after 300 cycles at 50 mA g−1. The electrode also offers excellent rate capability with a capacity recovery of 810 mAh g−1 (94 % retention) after 35 cycles of ascending steps of current in the range of 25–800 mA g−1 and finally back to 25 mA g−1. This work emphasizes the importance of exploring new electrode materials without carbon coating as carbon-coated materials demonstrate several drawbacks in full devices. Therefore, this study provides a method and a new type of anode with high reversibility and long cycle stability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700