Near-Infrared Photoresponse of One-Sided Abrupt MAPbI3/TiO2 Heterojunction through a Tunneling Process
详细信息    查看全文
文摘
Trap states in semiconductors usually degrade charge separation and collection in photovoltaics due to trap-mediated nonradiative recombination. Here, it is found that perovskite can be heavily doped in low concentration with non-ignorable broadband infrared absorption in thick films and their trap states accumulate electrons through infrared excitation and hot carrier cooling. A hybrid one-sided abrupt perovskite/TiO2 p-N heterojunction is demonstrated that enables partial collection of these trap-filled charges through a tunneling process instead of detrimental recombination. The tunneling is from broadband trap states in the wide depleted p-type perovskite, across the barrier of the narrow depleted TiO2 region (<5 nm), to the N-type TiO2 electrode. The trap states inject carriers into TiO2 through tunneling and produce around-unity peak external quantum efficiency, giving rise to near-infrared photovoltaics. The near-infrared response allows photodetecting devices to work in both diode and conductor modes. This work opens a new avenue to explore the near-infrared application of hybrid perovskites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700