Photoimmunotherapy of residual disease after incomplete surgical resection in head and neck cancer models
详细信息    查看全文
文摘
Antibody-based photodynamic therapy, or photoimmunotherapy (PIT), is a novel, targeted cancer therapy, which can serve as both a diagnostic and a therapeutic agent. The primary objective of this study was to evaluate the capacity of panitumumab-IRDye700DX (Pan-IR700) to eliminate microscopic tumor remnants in the postsurgical setting, which was accomplished using novel in vitro and in vivo models of residual disease after incomplete resection. Additionally, PIT was evaluated in fresh human-derived cancer tissue. To determine a threshold for cellular regrowth after PIT, an in vitro assay was performed using a range of cells representing microscopic disease quantities. Long-term growth inhibition was induced after treatment of 5 × 103 and 1 × 104 cells at 6 J. A novel in vivo mouse model of subtotal tumor resection was used to assess the effectiveness of Pan-IR700 mediated PIT to eliminate residual disease and inhibit recurrence in the post-surgical wound bed. Mice receiving surgical treatment plus adjuvant PIT showed a threefold and fourfold reduction in tumor regrowth at 30 days post PIT in the 50% and 90% subtotal resection groups, respectively (as measured by bioluminescence imaging), demonstrating a significant (P < 0.001) reduction in tumor regrowth. To determine the translatability of epidermal growth factor receptor (EGFR)-targeted PIT, SCCHN human tissues (n = 12) were treated with Pan-IR700. A significant reduction (P < 0.001) in ATP levels was observed after treatment with Pan-IR700 and 100 J cm−2 (48% ± 5%) and 150 J cm−2 (49% ± 7%) when compared to baseline. Targeting EGFR with Pan-IR700 has robust potential to provide a tumor-specific mechanism for eliminating residual disease in the surgical setting, thereby increasing therapeutic efficacy, prolonging progression-free survival, and decreasing morbidity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700