Facile Synthesis of 3D Graphene Flowers for Ultrasensitive and Highly Reversible Gas Sensing
详细信息    查看全文
文摘
Fabrication of nanostructured graphene (Gr) for gas sensing applications has become increasingly attractive. For the first time, 3D graphene flowers (GF) cluster patterns are grown directly on an Ni foam substrate by inexpensive homebuilt microwave plasma-enhanced chemical vapor deposition (MPCVD) using the gas mixture H2/C2H4O2@Ar as a precursor. The interim morphologies of the synthesized GF are investigated and the growth mechanism of the GF film is proposed. The GF are decomposed to few-layer Gr sheets by ultrasonication in ethanol. For the first time, MPCVD-synthesized Gr is exploited to fabricate a gas sensor that exhibits an ultrahigh sensitivity of 133.2 ppm−1 to NO2. Outstanding sensor responses of 1411% and 101% to 10 ppm and 200 ppb NO2, respectively, are achieved. Furthermore, a low theoretical detection limit of 785 ppt NO2 is achieved. An ultrafast (within 2 s) recovery is observed at room temperature, and an imbedded microheater is employed to improve the selectivity of NO2 detection relative to humidity. This work represents a simple, clean, and efficient route to synthesize large-area cauliflower Gr for gas detection with high performance, including ultrahigh sensitivity, good selectivity, fast recovery, and reversibility.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700