Syntheses and preliminary evaluation of [18F]AlF-NOTA-G-TMTP1 for PET imaging of high aggressive hepatocellular carcinoma
详细信息    查看全文
文摘
The goal of this study is to evaluate a new 18F-labeled imaging agent for diagnosing high metastatic (aggressive) hepatocellular carcinoma using positron emission tomography (PET). The new 18F-labeled imaging agent [18F]AlF-NOTA-G-TMTP1 was synthesized and radiolabeled with 18F using NOTA-AlF chelation method. The tumor-targeting characteristics of [18F]AlF-NOTA-G-TMTP1 was assessed in HepG2, SMCC-7721, HCC97L and HCCLM3 xenografts. The total synthesis time was about 20 min with radiochemical yield of 25 ± 6%. The specific activity was about 11.1–14.8 GBq/µmol at the end of synthesis based on the amount of peptide used and the amount of radioactivity trapped on the C18 column. The log P value of [18F]AlF-NOTA-G-TMTP1 was -3.166 ± 0.022. [18F]AlF-NOTA-G-TMTP1 accumulated in SMCC-7721 and HCCLM3 tumors (high metastatic potential) in vivo and result in tumor/muscle (T/M) ratios of 4.5 ± 0.3 and 4.7 ± 0.2 (n = 4) as measured by PET at 40 min post-injection (p.i.). Meanwhile, the tumor/muscle (T/M) ratios of HepG2 and HCC97L tumors (low metastatic potential) were1.6 ± 0.3 and 1.8 ± 0.4. The tumor uptake of [18F]AlF-NOTA-G-TMTP1 could be inhibited 61.9% and 57.6% by unlabeled G-TMTP1 in SMCC-7721 and HCCLM3 xenografts at 40 min p.i., respectively. Furthermore, [18F]AlF-NOTA-G-TMTP1 showed pretty low activity in the liver and intestines in all tumor bearing mice, such in vivo distribution pattern would be advantageous for the detection of hepatic carcinoma. Overall, [18F]AlF-NOTA-G-TMTP1 may specifically target high metastatic or/and aggressive hepatocellular carcinoma with low background activity and, therefore, holds the potential to be used as an imaging agent for detecting tumor lesions within the liver area. Copyright

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700