Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms
详细信息    查看全文
文摘
Metasurfaces have provided a novel route to control the local phase of electromagnetic radiation through subwavelength scatterers where the properties of each element remain passive. A passive metasurface design can only achieve a specific functionality as it is extremely challenging to reconfigure each element that contributes toward the control of the radiation. In this work, the authors propose a different scheme based on microelectromechanical system (MEMS) to reconfigure the resonance and radiation phase via control of each dipolar element. The suspension angle of the individual bimorph cantilever in air can be precisely controlled through electrostatic actuation that determines the operative phase diagram of the metadevice. The dynamic polarization conversion is demonstrated through global control. In addition, it is proposed that a multifunctional operation such as dynamic wavefront deflection and rewritable holographic display can be accomplished by using 1D and 2D control of the cantilever array when each cantilever in the MEMS metadevice array is uniformly and accurately controlled in the large-area samples. Such a rewritable proposition can enable myriad of applications of MEMS-based metadevices in polarization-division multiplexing and dynamic flat lenses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700