Temporal profiling of the growth and multi-lineage potentiality of adipose tissue-derived mesenchymal stem cells cell-sheets
详细信息    查看全文
文摘
Cell-sheet tissue engineering retains the benefits of an intact extracellular matrix (ECM) and can be used to produce scaffold-free constructs. Adipose tissue-derived stem cells (ASCs) are multipotent and more easily obtainable than the commonly used bone marrow-derived stem cells (BMSCs). Although BMSC cell sheets have been previously reported to display multipotentiality, a detailed study of the development and multilineage potential of ASC cell sheets (ASC-CSs) is non-existent in the literature. The aims of this study were to temporally profile: (a) the effect of hyperconfluent culture duration on ASC-CSs development; and (b) the multipotentiality of ASC-CSs by differentiation into the osteogenic, adipogenic and chondrogenic lineages. Rabbit ASCs were first isolated and cultured until confluence (day 0). The confluent cells were then cultured in ascorbic acid-supplemented medium for 3 weeks to study cell metabolic activity, cell sheet thickness and early differentiation gene expressions at weekly time points. ASC-CSs and ASCs were then differentiated into the three lineages, using established protocols, and assessed by RT–PCR and histology at multiple time points. ASC-CSs remained healthy up to 3 weeks of hyperconfluent culture. One week-old cell sheets displayed upregulation of early differentiation gene markers (m>Runx2m> and m>Sox9m>); however, subsequent differentiation results indicated that they did not necessarily translate to an improved phenotype. ASCs within the preformed cell sheet groups did not differentiate as efficiently as the non-hyperconfluent ASCs, which were directly differentiated. Although ASCs within the cell sheets retained their differentiation capacity and remained viable under prolonged hyperconfluent conditions, future applications of ASC-CSs in tissue engineering should be considered with care. Copyright

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700