Nanoconfinement Inside Molecular Metal Oxide Clusters: Dynamics and Modified Encapsulation Behavior
详细信息    查看全文
文摘
Encapsulation behavior, as well as the presence of internal catalytically active sites, has been spurring the applications of a 3 nm hollow spherical metal oxide cluster {Mo132} as an encapsulation host and a nanoreactor. Due to its well-defined and tunable cluster structures, and nanoscaled internal void space comparable to the volumes of small molecules, this cluster provides a good model to study the dynamics of materials under nanoconfinement. Neutron scattering studies suggest that bulky internal ligands inside the cluster show slower and limited dynamics compared to their counterparts in the bulk state, revealing the rigid nature of the skeleton of the internal ligands. NMR studies indicate that the rigid internal ligands that partially cover the interfacial pore on the molybdenum oxide shells are able to block some large guest molecules from going inside the capsule cluster, which provides a convincing protocol for size-selective encapsulation and separation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700