Phase Inversion: A Universal Method to Create High-Performance Porous Electrodes for Nanoparticle-Based Energy Storage Devices
详细信息    查看全文
文摘
The intrinsic properties of nanoscale active materials are always excellent for energy storage devices. However, the accompanying problems of ion/electron transport limitation and active materials shedding of the whole electrodes, especially for high-loaded electrode composed of nanoparticles with high specific surface area, bring down their comprehensive performance for practical applications. Here, this problem is solved with the as proposed “phase inversion” method, which allows fabrication of tricontinuous structured electrodes via a simple, convenient, low cost, and scalable process. During this process, the binder networks, electron paths, and ion channels can be separately interconnected, which simultaneously achieves excellent binding strength and ion/electron conductivity. This is verified by constructing electrodes with sulfur/carbon (S/C) and Li3V2(PO4)3/C (LVP/C) nanoparticles, separately delivering 869 mA h g−1 at 1 C in Li–S batteries and 100 mA h g−1 at 30 C in Li–LVP batteries, increasing by 26% and 66% compared with the traditional directly drying ones. Electrodes with 7 mg cm−2 sulfur and 11 mg cm−2 LVP can also be easily coated on aluminum foil, with excellent cycling stability. Phase inversion, as a universal method to achieve high-performance energy storage devices, might open a new area in the development of nanoparticle-based active materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700