Protein-Modified CuS Nanotriangles: A Potential Multimodal Nanoplatform for In Vivo Tumor Photoacoustic/Magnetic Resonance Dual-Modal Imaging
详细信息    查看全文
文摘
Controllable preparation of water-soluble multifunctional nanoprobes is of great significance for cancer early diagnosis. In this study, protein-modified hydrophilic copper sufide (CuS) nanotriangles with tunable absorption in the second near-infrared region are developed in the presence of halide ions. Further, gadolinium ions chelated diethylenetriaminepentaacetic acid is conjugated on it by using the unique characteristics of the protein-protected nanotriangles. Specifically, the as-obtained nanostructures are investigated as contrast agents for enhanced in vivo photoacoustic/magnetic resonance dual-modal tumor imaging. More importantly, in vitro and in vivo toxicity analysis are also performed, which show that the dual-modal nanoprobes are biocompatible for most of the cases. It is demonstrated that the novel as-prepared protein-modified nanotriangles are able to work as a nanoplatform to construct dual-modal nanoprobes, which paves a new avenue for improving the photoacoustic/magnetic resonance imaging contrast in cancer detection. It should be pointed out that other functional blocks may also be linked on it, which makes it a general method to design multifunctional nanoprobes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700