Impact of 60-GHz millimeter waves on stress and pain-related protein expression in differentiating neuron-like cells
详细信息    查看全文
文摘
Millimeter waves (MMW) will be increasingly used for future wireless telecommunications. Previous studies on skin keratinocytes showed that MMW could impact the mRNA expression of Transient Receptor Potential cation channel subfamily Vanilloid, member 2 (TRPV2). Here, we investigated the effect of MMW exposure on this marker, as well as on other membrane receptors such as Transient Receptor Potential cation channel subfamily Vanilloid, member 1 (TRPV1) and purinergic receptor P2X, ligand-gated ion channel, 3 (P2 × 3). We exposed the Neuroscreen-1 cell line (a PC12 subclone), in order to evaluate if acute MMW exposures could impact expression of these membrane receptors at the protein level. Proteotoxic stress-related chaperone protein Heat Shock Protein 70 (HSP70) expression level was also assessed. We used an original high-content screening approach, based on fluorescence microscopy, to allow cell-by-cell analysis and to detect any cell sub-population responding to exposure. Immunocytochemistry was done after 24 h MMW exposure of cells at 60.4 GHz, with an incident power density of 10 mW/cm2. Our results showed no impact of MMW exposure on protein expressions of HSP70, TRPV1, TRPV2, and P2 × 3. Moreover, no specific cell sub-populations were found to express one of the studied markers at a different level, compared to the rest of the cell populations. However, a slight insignificant increase in HSP70 expression and an increase in protein expression variability within cell population were observed in exposed cells, but controls showed that this was related to thermal effect. Bioelectromagnetics. 37:444–454, 2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700