Charge Transfer to LaAlO3/SrTiO3 Interfaces Controlled by Surface Water Adsorption and Proton Hopping
详细信息    查看全文
文摘
Electronic properties of low dimensional systems are particularly sensitive to surface adsorbates. Clear understanding of such phenomena can lead to highly effective and nondestructive material engineering techniques. In this work, water adsorption at the surface of LaAlO3/SrTiO3 heterostructures is systematically studied. The saturation of surface dangling bonds by spontaneous water chemisorptions is found to be a main enabler of the formation of the interface 2D electron gas. In particular, when imbalanced distributions of water based ions, namely protons and hydroxyls, are generated, interface electron doping or depletion becomes surface adsorbates dominant and independent of the LaAlO3 layer thickness. The investigations also reveal the importance of hydrogen bonding through molecular water layers, which provides an energetically feasible pathway for manipulating the surface-bond protons and thus the interface electrical characteristics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700