Pyrene-benzothiadiazole-based copolymers for application in photovoltaic devices
详细信息    查看全文
文摘
The preparation and characterization of four narrow band gap pyrene–benzothiadiazole-based alternating copolymers are presented. An investigation of the impact of attaching different solubilizing groups to the pyrene repeat units on the optical, electrochemical, and thermal properties of the resulting materials was undertaken along with studies on the aggregation of polymer chains in the solid state. Unsurprisingly, polymers which had the smaller 2-ethylhexyl chains attached to the pyrene units (PPEH-DTBT and PPEH-DTffBT) displayed lower molecular weights relative to polymers with larger 2-hexyldecyl substituents (PPHD-DTBT and PPHD-DTffBT). Despite this, the 2-ethylhexyl substituted polymers displayed narrower optical band gaps relative to their analogous 2-hexyldecyl substituted polymers. Of all polymers synthesized, PPEH-DTBT displayed the lowest optical band gap (1.76 eV) in the series. All polymers display degradation temperatures in excess of 300°C. Polymers with smaller alkyl chains on the pyrene units display shallower highest occupied molecular orbital levels, which could be due to increased intramolecular charge transfer between the donor and acceptor units. Preliminary investigations on bulk heterojunction solar cells with a device structure indium tin oxide/poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate /Polymer : PC70BM/Ca/Al were undertaken. Polymer/PC70BM blend ratios of one third were used in these studies and have indicated that PPEH-DTBT displayed the highest efficiency with a power conversion efficiency of 1.86%. Copyright

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700