Optimization of a Pixel-to-Pixel Curve-Fitting Method for Poroelastography Imaging
详细信息    查看全文
文摘
Ultrasound poroelastography is an imaging modality used to characterize the temporal behavior of soft tissue that can be modeled as a solid permeated by interconnected pores filled with liquid (poroelastic medium). It could be useful in the stage classification of lymphedema. Generally, time-constant models are applied to strain images, and precision of the fitting process, computational cost and versatility in response to changes in tissues properties are crucial aspects of clinical applications. In the work described here, we performed creep experiments on poroelastic phantoms and used rheologic models to visualize the changes in viscoelastic response associated with fluid mobility. We used the Levenberg–Marquardt algorithm as a fitting tool and performed parametric studies to improve its performance. On the basis of these studies, we proposed an optimization schema for the pixel-to-pixel curve-fitting process. We determined that the bimodal Kelvin–Voigt model describes efficiently the temporal evolution of the strain images in heterogeneous phantoms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700