Spike frequency adaptation is developmentally regulated in substantia nigra pars compacta dopaminergic neurons
详细信息    查看全文
文摘
Dopaminergic neurons of the substantia nigra pars compacta play a key role in the modulation of basal ganglia and provide a reward-related teaching signal essential for adaptative motor control. They are generally considered as a homogenous population despite several chemical and electrophysiological heterogeneities, which could underlie different preferential patterns of activity and/or different roles. Using whole-cell patch-clamp recordings in juvenile rat brain slices, we observed that the evoked activity of dopaminergic neurons displays variable spike frequency adaptation patterns. The intensity of spike frequency adaptation decreased during post-natal development. The adaptation was associated with an increase in the initial firing frequency due to faster kinetics of the afterhyperpolarization component of the spike. Adaptation was enhanced when small conductance calcium-activated potassium (SK) channels were blocked with bath application of apamine. Lastly, spike frequency adaptation of the evoked discharge was associated with more irregularity in the spontaneous firing pattern. Altogether these results show a developmental heterogeneity and electrophysiological maturation of substantia nigra dopaminergic neurons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700